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The branching aftershock sequence �BASS� model is a self-similar statistical model for earthquake after-
shock sequences. A prescribed parent earthquake generates a first generation of daughter aftershocks. The
magnitudes and times of occurrence of the daughters are obtained from statistical distributions. The first
generation daughter aftershocks then become parent earthquakes that generate second generation aftershocks.
The process is then extended to higher generations. The key parameter in the BASS model is the magnitude
difference �m* between the parent earthquake and the largest expected daughter earthquake. In the application
of the BASS model to aftershocks �m* is positive, the largest expected daughter event is smaller than the
parent, and the sequence of events �aftershocks� usually dies out, but an exponential growth in the number of
events with time is also possible. In this paper we explore this behavior of the BASS model as �m* varies,
including when �m* is negative and the largest expected daughter event is larger than the parent. The appli-
cations of this self-similar branching process to biology and other fields are discussed.
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I. INTRODUCTION

The purpose of this paper is to study the behavior of a
self-similar branching process. The motivation comes from
studies of aftershock sequences following earthquakes. A
large number of papers have studied the behavior of the epi-
demic type aftershock sequence �ETAS� models �1�. This
model includes multigenerational branching processes.

Branching processes have a long history and an extensive
literature. Much of this work has been associated with popu-
lation growth. On average the population Ni in the ni genera-
tion is given by the exponential relation

Ni = N0Rni, �1�

where N0 is the initial population, ni=1,2 ,3 , . . ., and R is the
basic reproductive rate �mean number of next-generation
daughters per parent�. For the subcritical case R�1 the
population always eventually dies out, and for the supercriti-
cal case R�1 there is either exponential growth or the popu-
lation dies out. The general case of integer numbers of
daughters is known as a Galton-Watson process and this is a
standard problem in statistics �2�. The exponential relation
�1� determines the average number of daughters in each gen-
eration, where the average is taken over all realizations of the
branching process. A realization in which the population dies
out occurs when random variation yields a generation with
zero daughters. There can be realizations in which the popu-
lation dies out even in cases in which R�1 and the average

number of daughters increase. However, die out is less likely
when the population is large.

The concept of branching described above has also been
applied to the foreshock-mainshock-aftershock sequences of
earthquakes �1,3,4�. All earthquakes produce aftershocks
that, for large earthquakes, can continue for a year or longer.
It is generally accepted that the aftershocks are caused by
stress transfer during the main rupture. The time delays as-
sociated with aftershocks can be explained by damage me-
chanics. Aftershocks are found to obey three scaling laws to
a good approximation �5�.

�1� Gutenberg-Richter �GR� frequency-magnitude scaling
�6�. This scaling is a power-law �fractal� relation between
rupture area and the number of events with fractal dimension
D�2 �7�. The background seismicity that drives aftershock
activity also satisfies this scaling with D�2.

�2� Omori’s law for the temporal decay of aftershock ac-
tivity �8,9�. The rate of aftershock activity is approximately
proportional to t−1 where t is the time since the mainshock
occurred.

�3� Bath’s law that the magnitude of the largest aftershock
is approximately 1.2 magnitude units less than the main-
shock �10�. Acceptance of Bath’s law leads to the conclusion
that aftershock sequences are self similar independent of the
magnitude of the mainshock.

Foreshocks also occur systematically. The magnitude dis-
tributions of foreshocks satisfy a modified form of GR sta-
tistics and an inverse Omori’s law for the time delays be-
tween foreshocks and main shocks �11�. When one or more
foreshocks occur, the main shock is considered to be an af-
tershock that is larger than the initial triggering earthquake.

A widely accepted branching model for earthquake after-
shocks is the ETAS model �1�. This model recognizes that
each earthquake has an associated aftershock sequence. The
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original earthquake in the sequence is the parent which gen-
erates a family of daughters, the aftershocks. Each of these
daughter aftershocks becomes a parent that can generate a
second generation of daughter aftershocks. Higher order
families of aftershocks are also generated. The sequence
must die out since the energy available for the aftershocks is
limited.

In the ETAS model the number of daughter aftershocks is
determined from a productivity relation. A random number
generator determines the magnitude of each aftershock from
a GR distribution and the time of occurrence from Omori’s
law. The key parameter in the ETAS model is the mean num-

ber N̄ of direct aftershocks per earthquake, averaged over all

magnitudes. If N̄�1, the sequence is subcritical and the

branching process dies out; if N̄�1, the sequence is super-
critical and the branching process can explode.

The self-similar limit of the ETAS model is the branching
aftershock sequence �BASS� model �4�. In this model the
productivity law is replaced by a modified version of Bath’s
law �12�. The BASS model is fully self similar. It is the
purpose of this paper to examine the behavior of the BASS
model and particularly whether the aftershocks die out or
increase exponentially with time.

The key parameter in the BASS model is the magnitude
difference �m* between the parent earthquake and the larg-
est expected aftershock. If �m* is negative, i.e., the largest
expected aftershock is larger than the mainshock, then the
number of events �aftershocks� grows exponentially with
time. If �m* is positive and large, then the largest expected
aftershock is much smaller than the mainshock or nonexist-
ent and the sequence of aftershocks dies out. In an interme-
diate range of �m*, the sequence of aftershocks can either
grow or die out. The sequence is always supercritical and the
average number of events grows exponentially according to
Eq. �1�. Despite this behavior of the average, there is a finite
and sometimes likely possibility of the events dying out. We
will examine this behavior as �m* varies.

II. SELF-SIMILAR BRANCHING MODEL

Although our self-similar branching model is motivated
by the BASS model for aftershocks, we believe that it is a
more general model for branching sequences. For conve-
nience we retain the magnitude nomenclature utilized for
earthquakes. For earthquakes the event magnitude m is re-
lated to the radiated energy E in Joule by the empirical rela-
tion �13�

log10 E = 1.5m + 4.8. �2�

For our general event analysis we consider the magnitude to
be a measure of the energy of an event. We consider an
original parent event with magnitude mp. This event will
generate subsequent daughter events with magnitudes md.

The magnitude distribution of daughter events is assumed
to satisfy a modified version of GR scaling of the form �4,12�

Nd��md� = �10b�mp−�m*−md�� , �3�

where mp is the magnitude of the parent event, md is the
magnitude of the daughter event, and Nd��md� is the number

of daughter events with magnitudes greater than or equal to
md. The symbol �x� denotes the integer part of x and its use in
Eq. �3� ensures that the number of daughter events is an
integer. For example, �4.7�=4 and �0.2�=0. The parameter
�m* controls the number of daughter events and the propor-
tion of cases in which Nd��md� becomes zero and the se-
quence of events ends. With md=mp−�m* we have
Nd��md�=1.

For aftershock sequences the parameter b �the b-value�
has a value near unity b�1. It has also been recognized that
for aftershock sequences the magnitude difference �m* has a
near constant value �m*�1.2. This scaling for aftershocks
is known as the modified form of Bath’s law �12�. It is the
purpose of this paper to study the dependence of the result-
ing self-similar branching sequences on the value of �m*.

In order to constrain the sequence of aftershocks �daugh-
ter earthquakes� it is necessary to specify a minimum mag-
nitude earthquake mmin in the sequence. From Eq. �3�, the
total number of daughter earthquakes Ndt is given by

Ndt = N��mmin� = �10b�mp−�m*−mmin�� . �4�

In the limit mmin→−� the number of daughter earthquakes is
infinite. From Eqs. �3� and �4� the cumulative distribution
function Pm for the magnitudes of the daughter earthquakes
is given by

Pm =
Nd��md�

Ndt
� 10−b�md−mmin�. �5�

The magnitude of each of the Ndt daughter earthquakes is
determined from this distribution.

We next determine the time of occurrence of each daugh-
ter earthquake. We require that the time delay t satisfies the
generalized form of Omori’s law �8�

R�t� =
dNd

dt
=

1

��1 +
t

c
�p , �6�

where R�t� is the rate of aftershock occurrence and �, c, and
p are parameters. The total number of daughter aftershocks
that occur after a time t is then given by

Nd��md� = �
t

� dNd

dt
dt =

c

��p − 1��1 +
t

c
�p−1 . �7�

The total number of daughter earthquakes Ndt is obtained by
setting t=0 in Eq. �7� with the result

Ndt =
c

��p − 1�
. �8�

From Eqs. �7� and �8� the cumulative distribution function Pt
for the times of occurrence of the daughter earthquakes is
given by
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Pt =
Nd��t�

Ndt
=

1

�1 +
t

c
�p−1 . �9�

The time of occurrence after the parent earthquake of each of
the Ndt daughter earthquakes is determined randomly from
this distribution.

There are two characteristic times c and � in the general-
ized form of Omori’s law given in Eq. �6�. The characteristic
time � specifies the initial rate of event activity at t=0 and
the characteristic time c is a measure of the time delay before
the onset of event activity. Observations for earthquakes �12�
indicate that it is a good approximation to take �=�0 constant
for an aftershock sequence. In this case c is a function of the
difference in magnitude mp−md. To obtain this dependence
we write Eq. �8� in the form

Nd��md� =
c�mp,md�
�0�p − 1�

. �10�

Combining Eqs. �3� and �10� gives

c�mp,md� = �0�p − 1�10b�mp−md−�m*�. �11�

The time delay c increases as the magnitude difference be-
tween parent and daughter events mp−md increases. There is
a cascade of events from large to small with increasing time
delays. Values of mp and md are used to determine the values
of c that is substituted into Eq. �9� to determine the time of
occurrence of the daughter event.

III. BASS SIMULATIONS

Model sequences of events are generated using simula-
tions. In order to carry out these simulations we do the fol-
lowing.

�1� Specify the magnitude mp of the initial parent event.
This event is introduced at t=0.

�2� Specify the minimum magnitude of events mmin to be
considered.

�3� Specify the magnitude difference �m*. This parameter
primarily controls the probability that the events die out.

�4� The total number of daughter earthquakes Ndt is deter-
mined using Eq. �4�. These are the first generation after-
shocks.

�5� For each of the Ndt daughter earthquakes, two random
numbers in the range 0 to 1 are selected. The first random
number is a value of the cumulative distribution function Pm
and Eq. �5� is used to obtain the corresponding magnitude
md. We take b=1 in our simulations. The characteristic delay
time c is then obtained from Eq. �11�. We take p=1.25 and
set �0=1. Our resulting times are T= t /�0. The second ran-
dom number is a value of the cumulative distribution func-
tion Pt and Eq. �9� is used to obtain the time of occurrence
t�T� of the daughter event. The procedure is repeated for
each daughter event.

�6� Each of the first generation event is then taken to be a
parent event and families of second generation events are
generated using the procedure described above.

�7� The process is repeated for third generation and higher
generation aftershocks.

IV. SIMULATION RESULTS

We will first generate a stable sequence of events that
corresponds to a sequence of aftershocks. For this purpose
we take the magnitude mp of the original mainshock event to
be mp=5 and take b=1. We specify the minimum magnitude
of the aftershocks to be mmin=0. We have shown �4� that the
choice of the minimum magnitude does not influence the
statistics of the larger aftershocks. A minimum must be pre-
scribed to keep the number of aftershocks finite. We take the
magnitude difference �m*=1.2. This is the typical value
found for actual aftershock sequences �12�. For the time de-
pendence we take p=1.25 and �0=1 as discussed above. The
results of a typical simulation are given in Fig. 1. The mag-
nitudes of the aftershocks m are given as a function of the
nondimensional time T= t /�0 after the mainshock. Six gen-
erations of aftershocks were generated in the sequence. Typi-
cal values of �0 for actual sequences are near �0=10−3 days
�14�. Thus the simulation represents the first 100 days of
aftershock activity. This simulation is similar to observed
sequences �14�.

We next consider more unstable sequences of events. We
take the magnitude mp of the original event to be mp=1, b
=1, and specify the minimum magnitude to be mmin=0. For
our example we take �m*=−0.2 so that the largest expected
daughter event is 0.2 magnitude units larger than the parent
event. For the time dependence we again take p=1.25 and
�0=1. The results of our simulation are given in Fig. 2. The
magnitudes of the events are given as a function of the time
T after the initial mp=1 parent event. This sequence was
terminated at T=7 at which time N=19 000 events had oc-
curred including 26 generations.

As we have shown in Figs. 1 and 2, we find sequences of
events that die out and that grow exponentially. We next
determine where the transition to likely blowup �exponential
growth� occurs. For a specified value of �m*, we use simu-
lations to determine the extinction probability q, and the
probability of blowup 1−q. We have run 100 simulations for
various values of �m*. In Fig. 3 we plot the fraction of

0.0 2.0x104 4.0x104 6.0x104 8.0x104 1.0x105
0

1

2

3

4

5
Generation 1
Generation 2
Generations 3-6

m

T

FIG. 1. Simulation of an aftershock sequence for a magnitude
mp=5 mainshock. Magnitudes m of the aftershocks are given as a
function of the nondimensional time T= t /�0. Six generations of
aftershocks were generated.
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exponentially growing events 1−q versus �m*. The transi-
tion from likely die out to likely exponential growth occurs
in the range �m*=0.6 to 0.2. For �m*=0.36 one-half of the
simulations die out and one half grow exponentially; that is,
q=1−q=0.5. We write ��m*�b=0.36 for this transitional
value.

We next determine the time dependent behavior for sev-
eral exponentially growing sequences. In Figs. 4 we give the
cumulative number of events N as a function of time. In Fig.
4�a� we give a sequence for �m*=0.1, in Fig. 4�b� we give a
sequence for �m*=−0.2, and in Fig. 4�c� we give a sequence
for �m*=−0.4. After initial transients each sequence settles
into well defined exponential growth defined by

N = N0e�T. �12�

For the three simulations illustrated in Fig. 4, we have �
=0.379 for �m*=0.1, �=1.25 for �m*=−0.2, and �=2.02
for �m*=−0.4. The growth rate increases systematically
with decreasing values of �m*. In Fig. 5 we give the depen-
dence of the exponential growth factor � on �m*. We see

that our results correlate quite well with the power law rela-
tion

� = 3„− �m* + ��m*�b…
1.5. �13�

It must be emphasized that even with �m*� ��m*�b, a
significant fraction of the simulations diverge. We will next
study this behavior using an analytical approach.

0.2 0.4 0.6 0.8 1.0
�m�

0.2

0.4

0.6

0.8

1.0
blowup probability 1�q

FIG. 3. Blowup probability 1−q as a function of �m*. The dots
are obtained by simulation as the fraction 1−q of event simula tions
that are unstable. The line is obtained by the calculations in Sec. V.

0 1 2 3 4 5 6 7
0

1

2

3

4
Generations 1-5
Generations 6-10
Generations 11-15
Generations 16-20
Generations 21-26

m

T

FIG. 2. Simulation of an unstable sequence with �m*=−0.2 and
a mp=1 initial parent event. Magnitudes m of the subsequent events
are given as a function of the nondimensional time T= t /�0. The
sequence was terminated at T=7 at which time N=19 000 events
had occurred in 26 generations.

(b)

(a)

(c)

FIG. 4. Number of events as a function of nondimensional time
T= t /�0. The straight-line correlations are with the exponential
growth relation �12�. �a� �m*=0.1, �b� �m*=−0.2, and �c�
�m*=−0.4.

TURCOTTE et al. PHYSICAL REVIEW E 79, 016101 �2009�

016101-4



V. ANALYTIC RESULTS FOR PROBABILITY
OF BLOWUP

A major emphasis of this paper has been the transition
from extinction to blowup. This has been quantified by the
extinction probability q which is the fraction of simulations
in which the number of events is finite. The blowup prob-
ability is then 1−q as shown in Fig. 3. In this section we
calculate the extinction probability q analytically.

We consider one earthquake and regard the variation in its
size as a random variable affecting the number of its daugh-
ter aftershocks. Then there is a probability distribution for

the number of daughter aftershocks. Since each aftershock
produced at any generation has a size independent of the
other aftershocks at that generation, this produces a Galton-
Watson branching process in the number of aftershocks at
each generation that we now determine. The blowup and
extinction probabilities of the branching process are then
computed. If the branching process extinguishes, this implies
a finite number of aftershocks. This branching process con-
tains no information about the timing of the aftershocks and
hence no information about the growth or decay rate of the
aftershocks. However, the possibility of a finite number of
aftershocks is a significant property of the model, and in
practice controls the behavior of the model when a finite
number of aftershocks is highly probable.

Suppose we consider one particular aftershock that occurs
at any generation after the first generation earthquake. The
size M of this aftershock is distributed according to Eq. �5�
or, equivalently, the shifted exponential probability distribu-
tion function

fM�m� = �b ln 10�10−b�m−mmin�, m � mmin. �14�

Then, according to Eq. �4�, the aftershock of size M will
produce the number N of aftershocks in the next generation,
where

N�M� = �10b�M−�m*−mmin�� �15�

and �x� is integer part of x.
The probability that the aftershock has n aftershocks in

the next generation is

pn = P�N = n� = P�n 	 10b�M−�m*−mmin� � n + 1�

= P�b−1 log10 n + �m* + mmin 	 M � b−1 log10�n + 1� + �m* + mmin�

= �
b−1 log10 n+�m*+mmin

b−1 log10�n+1�+�m*+mmin
fM�m�dm

= b ln 10 �
max	b−1 log10 n+�m*,0


max	b−1 log10�n+1�+�m*,0

10−bxdx

= �max	1 − 10−b�m*,0
 , n = 0,

�max	n10b�m*,1
�−1 − �max	�n + 1�10b�m*,1
�−1, n � 1.
� �16�

For �m*�0, Eq. �16� reduces to

pn = 
1 − 10−b�m*, n = 0,

10−b�m*

n�n + 1�
, n � 1. � �17�

The probability that the aftershock gives rise to no after-
shocks in the next generation is p0. When �m*�0, Eq. �17�
shows the exponential dependence of p0 on �m*. Moreover,
when �m*�0, the probability of the aftershock having one

or more children is 1− p0=10−b�m*. When �m*�0, Eq. �16�
shows that p0=0 and hence that aftershocks always have
children. In this case, the sequence of aftershocks can never
extinguish and blowup is certain. The generating function
f�s� for the branching process after the first generation is �2�

f�s� = �
k=0

�

pks
k. �18�

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

2.0

λ = 3(−∆m*+(∆m*)b)
1.5

λ

−∆m*+(∆m*)b

FIG. 5. Dependence of the exponential growth factor � on the
difference between �m* and its transitional value ��m*�b=0.36.
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We now consider the first generation of aftershocks of a
parent earthquake of given �deterministic� size M1. Then for
the first generation there are N1 aftershocks, where

N1 = N�M1� = �10b�M1−�m*−mmin�� . �19�

The generating function f1�s� for the first generation of the
branching process is

f1�s� = sN1 = s�10b�M1−�m*−mmin��. �20�

Notice that f1 has jumps as functions of its arguments or
parameters because the integer part function �·� has jumps.

Note that Eq. �16� or �17� shows that the probability of an
aftershock having n daughters pn�n−2 for large n. Therefore
each aftershock produces, in the next generation, a mean
number of daughter aftershocks

N̄ = �
n=0

�

npn = � . �21�

The result �21� is independent of the values of �m* and b
and the branching process is always supercritical.

We now state how to compute the extinction probability q
�2�. First we compute the extinction probability q* that as-
sumes that there is one initial earthquake. q* is the smallest
non-negative root of

s = f�s� . �22�

�To solve Eq. �22�, one can either use computer algebra to
approximate the generating function f with the first 500
terms of the series �18� and then solve the resulting polyno-
mial �22� numerically, or one can solve Eq. �22� iteratively
by q*� f �k��0�, where the exponent �k� indicates a suitable
number of functional compositions of f such as k=50. These
two methods yield the same results.� For our branching pro-
cess we always have p0	q*�1. There is always a root s

=1 of Eq. �22� larger than q* and the mean offspring N̄
= f��1� is infinite. Nevertheless, q* can be close to 1.

Then

q = f1�q*� = q*
N1 = q*

�10b�M1−�m*−mmin��. �23�

q is the extinction probability for N1 initial earthquakes and
this extinction occurs precisely when each of the N1 initial
earthquakes produces a sequence of events that extinguishes.
Since q* is the extinction probability assuming one initial
earthquake, and the branching process assumes that each of
the N1 initial earthquakes independently produces daughters,
the probability q of all N1 sequences extinguishing is given
by Eq. �23�. Equation �23� shows that the extinction prob-
ability q has a strong dependence on M1 and �m*. Small M1
or large �m* tend to make the probability of extinction high
and the probability of exponential blowup small.

To show how the theory matches simulation results of the
previous section, we take the case b=1, mmin=0, M1=1. For
this case,

N1 = �101−�m*� and p0 = max	1 − 10−�m*,0
 . �24�

In Fig. 3 we compare the results of this analysis with the
simulation results. We see that the agreement is excellent.
For �m*�1, Eq. �24� shows that there are no aftershocks at
all and the probability of blowup 1−q is zero. For �m*

=0.9, there can be aftershocks, and there is a possibility of
blowup, but the probability of blowup is very small, with 1
−q=0.0009. For �m*�0, since the probability of extinction
in the next generation p0=0, extinction is impossible and
blowup is certain with 1−q=1.

We also consider the blowup probability for the condi-
tions used to generate the stable sequence of events illus-
trated in Fig. 1. Taking M1=5, b=1, and mmin=0, the blowup
probability 1−q is given as a function of �m* in Fig. 6. For
the example given in Fig. 1, �m*=1.2, and from Fig. 6 we
see that the blowup probability 1−q=0.7. However, 10 000
simulations for these conditions gave no examples of blowup
for simulation times up to T=106.

VI. BASS, ETAS, AND BLOWUP

We first show how the BASS model can be derived from
the ETAS model. In the ETAS model the total number of
daughter earthquakes Ndt is given by the productivity relation
�1�

Ndt = k10
�mp−mmin�. �25�

In the BASS model Eq. �25� is replaced by Eq. �4�. We see
that Eq. �25� is identical to Eq. �4� if


 = b and k = 10−b�m*. �26�

The ETAS model uses the GR scaling �3� and Omori’s law
�6� exactly as in the BASS model. Taking 
�b in the ETAS
model eliminates self-similarity �15�.

A major problem is that the ETAS model introduces two
constants k and 
 in Eq. �25� that are not constrained by
observations. In the BASS model these constants are re-
placed with b and �m* as shown in Eq. �26�. Both b and
�m* are constrained by data �4�. Also there are two widely
accepted observations that are not consistent with the ETAS
model. The first is the applicability of Bath’s law and its
modified form. In the ETAS model there is an exponential
dependence of �m* on main shock magnitude that is not

0.5 1.0 1.5 2.0 2.5 3.0
�m�

0.2

0.4

0.6

0.8

1.0
blowup probability 1�q

FIG. 6. Blowup probability 1−q as a function of �m* obtained
by the calculations in Sec. V with b=1, mmin=0, M1=5.
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consistent with observations. The second observation con-
cerns foreshocks. The self-similar behavior of the BASS
model predicts that the probability of an earthquake having a
foreshock is independent of the main shock magnitude,
whereas the ETAS model predicts an exponential depen-
dence. The exponential dependence is not consistent with
observations. The BASS model also predicts the modified
form of the GR statistics whereas the ETAS model does not.

When �m* has the value 1.2 typical for earthquake after-
shocks, there is a finite probability of blowup as illustrated in
Fig. 6. Blowup cannot occur in an aftershock sequence be-
cause the available elastic energy is finite. This probability of
blowup has led advocates of the ETAS model �3� to reject its
self-similar limit, the BASS model. However, extensive stud-
ies of the BASS model �4� have shown that it is relatively
easy to suppress the blowup of the BASS model that is stud-
ied in this paper. This can be done either by finite-time cut-
offs or limits on the magnitude of a daughter earthquake
relative to the size of the parent earthquake.

VII. DISCUSSION

In this paper we have applied a self-similar branching
model that, although exponentially unstable on average, has
a significant chance of extinction. The rationale for the
model comes from studies of aftershock sequences. These
sequences relax the stresses introduced by the mainshock in
an earthquake sequence. In our self-similar branching model,
the probability of extinction of the process is directly related
to the control parameter �m* and we have systematically
studied the transition from almost certain extinction to al-
most certain blowup.

When �m* has the value 1.2 typical for earthquake after-
shocks, and there is an initial earthquake of modest size, the
probability of the process blowing up exponentially is small
and the probability of the process dying out is high. In terms
of the earthquake analogy the sequence of aftershocks re-
laxes the high stresses imposed by the original mainshock.
For a larger initial earthquake, the process is in a transitional
region where dying out and ultimately blowing up exponen-
tially are both likely possibilities. However, the exponential
blowup may not be evident in finite-time simulations.

When �m* is small or negative in our branching model
the probability of the process dying out is small and it is

likely that the number of events increases exponentially with
time. The magnitude of the largest event increases linearly
with time. This instability is a multiplicative growth process.
Large events trigger even larger events.

The self-similar branching process considered in this pa-
per is analogous to other self-similar branching processes,
both in simulations and in nature. One example is river net-
works �16�. Many branching examples in biology behave in
direct analogy to river networks. Examples are pulmonary
systems, cardiovascular systems, and the vein structure of
leaves �17�. A simulation that gives a similar behavior is
diffusion limited aggregation �18�. All these examples in-
cluding our self-similar branching model satisfy Tokunaga
fractal side-branching statistics �19�.

It is of interest to contrast the multiplicative exponential
growth phenomena discussed above with critical point phe-
nomena. This is most easily done by considering a specific
example, site percolation. A percolating cluster is a classical
critical point with scaling exponents �20�. One way to ap-
proach the critical point is to utilize a forest-fire model with-
out fires. Trees are randomly planted on sites until a continu-
ous path of trees cross the grid; this is the critical point. It
has been shown �21� that the growth of tree clusters on the
approach to criticality is dominated by cluster coalescence.
Planted trees bridge gaps between tree clusters to create
larger clusters. It has been shown analytically �22� that this
additive coalescence process directly gives the power-law
scaling associated with the approach to a critical point. Other
classical critical point problem such as the Ising model, mag-
netization, and phase changes are directly associated with
cluster coalescence. Cluster coalescence is fundamentally an
additive process. Large clusters evolve from the coalescence
of smaller clusters. This is in direct contrast to the multipli-
cative branching processes considered above. In our self-
similar branch model large events are created instanta-
neously and do not evolve from the coalescence of smaller
events.
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